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Abstract

The effects of random accelerations on the measurements of quantities in the
vicinity of the liquid-gas critical point arc considered when the system is in a
microgravity environment. These accelerations couple to the order paraneter
through the transverse component of the velocity field, whose dynamics are
also governed by critical point properties of the liquid-gas system. The action
of the accelerations is amplified by the singular static and dynamic response
of the gas-liquid system. A genera formulation, based on “Model II” critical
dynamics allows for the calculation of a variety of quantitics. It is found
that the random accelerations expectedin @microgravity environrnent will not

compromise the accuracy of any experiment that is currently envisioned.
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I. INTRODUCTION

Space- based laboratories present the researcher with an environnient in which the proper-
ties of some critical point systems of current interest can bc investigated with unprecedented
accuracy [1]. Among the most important of those systems arc liquids having a critical or
multicritical point. It has been known for a longtime that the variations in the pressure
of a liquid sample duc to the earth’s gravitationalatt: action impose the ultimate limit on
the accuracy of any mecasurement of critical point properties in an earthbound laboratory
[2]. The effects of gravity arc especially pronounced for the very important and widely-
studicd liquid-gas critical point of a single chemical component, which corresponds to the
termination of the co-existence curve separating the liquid and vapor phases [2]. For this
system, the order parameter couples directly to the gravitational field. Given the formal
correspondences that follow from the universality of critical behavior, the liquid-gas critical
point is effectively identical to that of a uniaxial ferromagnet whose Curie-point behavior
has been disrupted by the action of a spatially varying, externally-generated magnetic field.

The potential benefits of improved measurements of critical point properties in simple
gas-liquid systems arc profound. These systems represent the first discovered example of
critical point behavior [4]. They arc also exemplars of a broad class of systems. The
exponents that quantify the critical behavior of simple gas-liquid systems should also apply
to analogous bchavior in uniaxial ferro- and antiferromagnets at the Curie and Néel points,
two-component mixtures at the demixing transition, and the Ising immodel [5]. This last
system is, in itself, extremely important. The mathematical simplicily of the Ising model’s
Hamiltonian allows for relative easc of renorxrlalization-group-based analysis [6], Monte Carlo
simulations [7] and high-and low-temperature expansions [8]. Because of this, the predicted
values of the critical exponents of the simple gas-liquid universality class in three dimensions
arc the most precisc and reliable of all non-exact theoretical resulls in the study of critical
phenomena. An accurate experimental determination of the critical properties of a simple

gas-liquid systcm represents a stringent, possibly decisive, experimental test of some of the
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most important theoretical models and techniques- --as well as some of the most influential
ideas about the behavior of interacting systems- -that have been developed in the past four
decades.

The environment in a space-based laboratory is not entirely free of gravitational effects.

There arc, of course, the forces duc to the gravitational interactions between all the matter

on the spac¢ craft. Much more importantly, random accelerations, which arc unavoidable -

in an orbiting laboratory, give rise to effective gravitational-like forces. Unlike the earth’'s
gravitational field these forces fluctuate in time, but they nevertheless can act to limit the
ultimate precision with which critical point mecasurcments can be performed. In this paper,
wc present the results of a study of the effects of fluctuating linear and rotational accelera-
tions on the static and dynamics of a simple gas-liquid system in the immmediate vicinity of its
critical point. ‘I’his study represents the completion of work reported on previously [9]. ‘I’he
approach utilized here isto be contrasted with the calculation of lerrell [1 O], who utilized
an a.pproximatc,SCH' consistentﬂUCLuatiO“'dissipation relation to obtain predictions for the
effects of random linear accelerations on the wave-vector-dcimlidcl]t thermal conductivity.
Wc develop an approach that yiclds a larger number of 1csults, abeit in the long-wavelength,
low-frequency limit.

The results of this theoretical analysis will be applied to the 3llc critical point, which is,
now being considered as a model liquid-gas systcm for st udy in a space environment [1 1]. Wc
find that the random motions expected in a microgravity environment will not compromise

the accuracy of any forsccable experiment.

11. PERTURBING FORCES DUE TO RANDOM MOTIONS OF THE

APPARATUS

The critical dynamics of a liquid-gas system arc controlled by the transverse (i.e.
divcrgence-free) component of the velocity field. An essential stage in the assessment of

the effects of small random motions on the critica properties of a liquid-gas system is, thus,



to determine the exact manner in which random linear accelerations and rotations couple to
the transverse velocity field. We will find that there are four such couplings, each of which
can produce an effect on the critical point properties.

As our first step, however, it is necessary to consider the effect of small fluctuations in
the linear velocity of the system on the purely longitudinal (i .c.irrotational) velocity field.
If a container suffers only linear accelerations then the 1nost reasonable assumption that one
can make is that the fluid contained in it translates with the container as if it were a solid
body, However, near its critical point a fluid is highly compressible, and because of that
its velocity can vary considerably from point to point. Furthermore, the systcem has normal
rnodcs that can, in principle, be resonantly excited if variations innthe container’s motion
have the proper frequency. Such a resonant excitation of modes could, in principle, lead to
a tremendous amplification of the effects of small accelerations. This issue is addressed in
the next Section. Resonant excitation of normal modes dots not occur in the parameter
range of interest in this study. However, because of the nonvanishing compressibility of the
liquid-gas system, modes will be nonresonantly excited. The lowest-lying modes will be the
most strongly excited by this mechanism.

Lincar accelerations only couple directly to the longitudinal component of the velocity
field. g'here arc two ways in which the purely longitudinal inertial forces induced by linear
motion of the container indirectly perturb the transverse component of the velocity field.
First, the cffective gravitational force can have a transverse component, as the result of
fluctuations in the mass density p(x,t). In “fouricr space” this component can be written

as
Fi(k,t) = T(k) - (a(t)/)(k’ 1)), (2.1)

where a(?) is the fluctuating lincar acceleration of the container, and the projection operator
T, with clements 73;(k) = é;; — kik;/k*, selects the transverse part of the inertial force
a(t)p(x,1). This is the coupling that gives rise to the perturbations calculated by Ferrell

[10]. A sccond coupling of the linear ac.colorations to the transverse velocity is via the



convective contribution, (v . V)v, to the total time derivative of the velocity in its equation

of motion (see Eq.(A8c)). We begin by writing

(v -V)v= lez —v x(V xv). (2.2)

2
Decomposing the velocity field, v, into transverse andlongitudinal components, vi and vy,

wc find that the only contribution to the convective part of the time derivative that has a

non-zcero transverse component is
vi X (V X vy). (2.3)

The transverse contribution to the cffective force associated with ¥q.(2.3  can be extracted

in fourier space. It is
Fa(k, 1) = —vi(k)(vi- ). (2.4)

Implicit in this result is the assumption that the longitudinal component of the velocity field
is effectively constant throughout the container.

Random rotations of a container will also give rise to effective forces on the liquid-gas
system contained therein.The most important of these are the Coriolis forces. The general

form of such forces is
Fe =20 xv. (2.5)

in this case there is direct coupling to the transverse component of the velocity field. The
transverse component of the Coriolis force given by Fq. (2.5), with v = v, is, in fourier

space,
Fs = 2Q - k(k x v,)/k% (2.6)

Finally, the component of the rotational velocity € that is trausverse to both v,(k) and
vi(k) -- denoted by §2,-- couples the longitudinal and transverse velocity fields. That is, the

transverse velocity field responds to an effective force given by
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Fi. = 2(821 x Vi), (2.7)
while the longitudinal velocity field is subject to the eflective force
Fy = 2(20 X vy). (2.8)

Note that the force F,can be thought of as ‘(direct” ,in that it does not depend directly on
the velocity fields. By contrast, the forces F, F,, and ¥4, 4, which have a linear dependence
on v, are “parametric” in form.

As it turns out, the force F, which is central to Ierrell’s calculations, dots not play a

role in our approach.

111. MOTION OF FLUID IN A VIBRATING CONTAINER

The next step in the assessment of the effects of random motions of a container is
to determine the response of the fluid to those motions. 7Tosimplify the discussion of
the effects of lincar accelerations, we assume a one-dirnensional geometry. The linearized
hydrodynamical equations that control the evolution of the velocity ficld v(z,t) and the

mass density p(z,1) are

Ov _ )

pog; = —[poBs) " 2 + 5.3 (3.1)
dp v
ot = T (3:2)

where p. isthe equilibrium fluid density, taken to be the critical density, 8s is the isentropic
compressibility and 7 is the viscosity. Interins of the shear viscosity, 71,and the bulk
viscosity, 72,7 = /3 + 0.

If wc write

v(x,y) = voe! k=), (3.39)

plz,y) = Apcita=wd) (3.3b)

then Eqgs. (3.1) and (3.2) become




tkAp
pOﬂs
ikp()vg. (35)

—2WVpPo

J— k27_]'v“’ (34)

wlp

These two equations imply the following dispersion relation:

Y (3.6)

Solving for the wave vector k:

= kR + ll»[ (3.7)

in the equation above 7 = 3,7 is the rclaxation time and the undamped sound velocity c is

given by

¢ 1/ y/poBs. (38)

Suppose, now, that we arc intercsted inthe behavior of the velocity field inside a stcadily
vibrating container. The most general solution to the one-dimensional equations of motion-

thc time-dcpclidencc being sinusoidal with angular fiequency w- is
v(a:’i) - [AcikRJ:_klg: + ]gc—iknx-{»klx] e—iwl + [Ce- ik}(l’—kll‘ _*_ ])Cik“l‘-}-k]:l,‘} clwi. (39)

If wc impose the following boundary conditions on the velocity field at the ends of the

container, at x = £/,
v(L,1) = v(—1, 1) =V cos wi, (3.10)

then the cocflicients in . (3.9) must take on the following values

\'

A B 4 COS(ICR]; + ik}]/), (3 &)
/

CoDee Vo (3.11b)

4 cos(kR_L - ik;],j

1




The velocity field inside the container (—~1 <z<1L)is

_iwt Cos(krx % ikjT)

COS(]CRL —-I-——ZI\IE) .

v(z,t) = VR]e (3.12)

The denominator in Eq. (3.12) has a resonant form in the vicinity of coskrl = O, or
kr=(n+1/2)x/L. To explore the resonant response in greater detail, we evaluate the
integrated weight of v(x,1):

C—zwt

cos(kpL + ik, L)

L L
/ v(z,t)de = V?R/ cos(kpz + tkjz)da
~L

~L

—twt
= 2V§R I:kn —{»m ta,n(k;g], + 'Lk]]/)‘
e ™' sin kpl cos kyL i sinh k;L cosh kL
= VR —_——= = 3.13
[kn + iky COSkrL +sinh? kI (313)

If wr <<2 in the vicinity of the resonance, then the amplitude of thec velocity goes as

wirl/c

((wLje (4 1/2)7)* + (wPrl[e)?)

(3.14)

Now, the linear dimension of a container in a the kind of low-temeperature experiment
likely to be performed in a microgravity environment is ~ 10 cm. The wavevector kr of the
lowest-lying resonant mode is, then, given by kj~2x/20 cm = 0.33 cm. ]n the case of near-
critical 3He, sound in the relevant frequency range propagates adiabatically, and its speed
is equal to 3.2 x 10%¢%9571] z, where t is the reduced temperature [t = (7' — eritical) /T critical]
(see qable 111). Thefrequency,w, of this mode is, thus, equal to~ 1 x 10990571z, If
t = 107, then w = 4 x 10%Hz. The width of theresonance at this frequency is equal to
Q=wr/2= f/Af with 7 = 3.8 X 1071217 %5cc. At {1 =10"", wr~ 2 x 107, so the mode
is very well-defined. As the characteristic {frequencies of random lincar velocities in a space
environment arc expected to be in the tens of Iertz (I 2], resonant excitation of acoustic
modes must be considered unlikely.

The frequency at which the container is vibrating in a space cnvironment is smal com-
pared to the frequency of the lowest-lying mode, and wc can expand the expression in kEq.

(3.12) with respect to kp.The velocity is given by




: 1
v(z,t) ~ Ve ™ [1 - 51:?{(.%2 - Lz)1 : (3.15)

In the frame of rcfcre/ce of the vibrating container,
i

1
v(z, 1) — Ve"“"tﬁkf(L2 — a?). (3.16)

In the center of the container (z=: O) the velocity has a magnitude equal to V(1 + %kRLQ),
so the velocity of the fluid in the reference frame of the container is Vi4L? = V(wL/Cs)?.
The quantity Cs is the adiabatic speed of sound, as given above.

The above results allow us to check immediately for the density flucutations induced by
vibrations in the container and the rate at which heat is generated as the result of viscous
damping of the fluid's motion.

The small fluctuations in density associated with the velocity variation above arc given

by Egs. (3.2) and (3.16):

. wzV
6P($, w) = ch--é—g"_ (3.17)
The mean square variation in the density is
w?z?V?
op(z,w)ép(z, —W) = pf———c;f—. (3.18)
S
Averaging over an ensemble of random velocitics:
2,.,2,.2
prwta? (v(w)o(~w))
(bp(z,w)ép(a, —w)) = pewe” (ol —_— (3.19)

Cq

In the above liquation, (6p(z, w)ép(x, —W)) is the spectral density of mass density fluc-
tuations and (v(w)wv(—w)) is the spectral density of random containcr velocities. Using
(aw) a(~w))= w*{(v(w)v(—w)), where (¢(w) a(--w)) is the spectral density of accclcrations,
wc end up with

2,.2

(6p(z, w)ép(z, -Cd))= %”; (a(w) a(—w)) . (3.20)
3

The root mean square of density fluctuations is, then,




(—w)) dw < fi{i\/ / ) duw. (3.21)

Thus, the fractional variation in density due to random accelerations of the container is

zé; (a(w) a(—w)) dw. We can also utilize the results for the velocity in a vibrating

container to estimate the rate at which the temperature will rise as a result/ viscous damping

of the induced velocity fluctuations: the end result is

ar 14 2
—w)) dw.
T G / w? (a(w)a(~w)) dw (3.22)

!

IV. RANDOM LINEAR ACCELERATIONSAN])TRANSP()I{TCOEFFIC/ENTS

Because of the coupling of longitudinal velocity fluctuations to the transverse velocity
through the convective contribution to the total hyd: odynamic time derivative, (see Eq.
(2.4)), random vibrations of the container will alter transport coefficients, most notably the
thermal conductivity, & and the shear viscosity 7;.The changes inthe transport cocflicients
due to mode-coupling can be calculated with the usc of a modification of the standard
perturbation-theoretical  formalism. The diagrammatic notation is summarized in Fig. 1. It
is an adaptation of the approach appropriate to critical dynamicsin which there is a single
fluctuating field, characteristically the energy density. The order parameter propagator in
the case at hand is more complicated, as wc must take into account fluctuations in both
the energy density and theimass density. The scalar order parameter is a combination of
those two fields. Theunderlying dynamics are outlined in Appendix A. The order parameter

propagator is obtained by invertingthe response equations

.2 ‘k2
1 (k) [—iw + %Za(k)] + pl(k,w)i‘p—?b(k) -, (4.1a)
k2b(k) p. C 2ik2e(K)p. w2
a(k,w)? L—)I’- pr (b w)[—iw 3_-(~7L+ -—[;-] - S, (4.1b)

The solution is
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Cl(k, w) 1 —iw + gl}ii}ﬁ}i)& + ﬁ;} _.'55.2_%@) fe

— e pc
pu(kyw) D(k,w) — #(K)pe —iw + % 2a(k) | \ f,

(4.2)

Jee(kyw) gep(k,w) Jfe
gpc(kaw) gpp(k’w) fP
The g's in Eq. (4.2) arc the components of the order parameter propagator, and the function

D(k,w) is given by

k2c(k)pe Tk 2rk2a(k e kAb(k)?
D(k, w) = —iw — 2EE)re RS g g 2ERR) f( ) iekTb(k) 4.3)
( w ) oy e

By contrast, the transverse velocity propagator Gr(k, w) has thestandard form
Gk, w) = — - (4.4)

All quantities in the above equations are defined in Appendices A, I3 and C.
The coupling of vibration-induced fluctuations in the longitudinal velocity to the trans-
verse velocity leads to the following insertion on the transverse velocity propagator line

[13,14]

1.2
= [ dw'— M ol ol — ')y 45
/ S2W + W)+ 7]1’»‘2//%( (w')o( )) (4.5)

This insertion is illustrated in I'ig. 1. The quantity k,is the component of the wave vector
k that is parallel to the longitudinal velocity fluctuations. Thecone-loop correction to the
thermal conductivity is of the form shown in Fig. 2. After some reduction, onc finds for the

leading order contribution to the thermal conductivity

2 d3p 1
—kgl1'p. - ——— 4.6
357 | Gy a i o d o TESG0) (49)

where a'(k) = a(k) — b(k)?/4a(k)c(k) is the static encrgy density susceptibility. Furthermore, -

1

as discussed in Appendix B, a(0) «<cp'. Utilizing an Ornstein-Zernicke-type form for a’ (k)

(a'(k)= &% + K) and carrying out the integrations over the wave vector p, wc arrive at

1]



the following correction to the thermal diffusivity to lowest nontrivial order in the random

linear motions

1 kBJ{,(pc w2 1 1
6Dy = _— — Vi - — ,
=g [ dw (a()a(-w")) CE T+ i il Ely @

where the thermal diffusivity is given by
Dr= —K---, (4.8)
T.cppe
and the quantities in Eq. (4.8) are defined in g'able I.
The renormalization of the transverse velocity propagator also leads- quite directly---to
results for the alteration of the effective shear viscosity. ‘I'he fractional change in n; follows
from consideration of the insertion A¥(k,w). Setting w = O, wc find

I 1274
2 [} ( )) 1
AX(k, 0) k Jd mk by,

J _w/)) 771 k w/214
3 7711»2//) P Hw? o C4 e

(4.9)

Taking the limit k — O, wc sec that AY & K', which mcans that random linear accelerations

of the container lead to no change in the effective shear viscosity.

V. EFFECTS OF RANDOM ROTATIONS ON ‘I? RAN SPORT COEFFICIENTS

AND THERMODYNAMIC I'UNCTIONS

Woc will consider separately the two forcing terms established in Section |11:

A. Rotations that couple thetransverse velocity field to itself

The insertion on the transverse propagator line associated with the force Fy, is illustrated
in Fig. 1. It leads immediately to the insertion on the transverse velocity propagator line

shown in Fig. 3. This insertion has the form

12



\ ;@) g (@) y(~w))
N R K e v byl K et SR N /8%

L ] I (),

(5.1)

The quantity §2; is the component of the rotation vector 0 parallel to the longitudinal
velocity field. The final limit above is a w = O and as £ — O. We have, as the fractional

change in the shear viscosity,

(5.2)

] i)

In the equations above <Q”(w)ﬂn(—w)>isthc spectral density of random rotations.

Because of the way in which the one-loop correction to the thermal conductivity depends
on the shear viscosity (see kq. (4.4) and Ref. [14]), the fractional change in k or Dy is the
same as the fractional shift in 5;. Note that both shifts are independent of temperature and

other parameters.

B.Rotations that couple the transverse andlongitudinal velocity fields

The insertion on the transverse propagator is as illustrated in IYig. 1. Using Eq. (4.2)
and the relationship (Al ) between the mass density andthe longitudinal velocity field, we

have for the alteration of the transverse velocity field propagator

— [ dw (0 (W) (~w'))

—Hwtw’) +2 sk2alk)fp?
(it N HR @R pe/lwt )0 p N=t{et ')+ 2a( A2 [o2) - inkA6(k)2 ] (wt w)pe

T [ dur A ) (5.3)

Because of the coupling between the two velocity fields, the change in the shear viscosity is
now proportional to the viscosity appropriate to the longitudinal velocity ficld.
The alteration above in the shear viscosity yields, asin the previous Sub-

section, a perturbation in the thermal conductivity that is proportional to
T7/pe) [ du’ ((Qu (W)L (—w')) ).
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Finally, there is an insertion in the propagator g¢.(k,w) analogous to the transverse
velocity insertion illustrated in Fig. 3. This insertion has the following first order effect on

the propagator
J dw'gep (K, w) Gr(ky w + w')g,pe (14 (') (—w")) . (5.4)

After some reduction, we find for the effective insertion

50

)2,{: 7 ! . /
Te(O)75? [ (00 (-2), (55)

the above being valid in the limit of small (k, w). This insertion does not have the form of
a thermal conductivity, in that it dots not vanish as k? in the limit of long wavelength.
The final contribution above to transport cocflicicnts also produces an alteration in
thermodynamic susceptibilitics. This is because of the relationship between the dynamical
and thermodynamical response inherent in the system of equations discussed in Appendix

A:

. h’ .
cp = kk;li]»o ;gg“(k,w). (5.6)

The fractional shift in ¢p is

o () (kY PR
o B Ry R G (RC ] (2% ) &7

The limit £k + O is catastrophic because of the first term in (5.7). The combination in
the middle approaches ratio cp/(cyC?) in that limit, and the integral over the spectrum of
random rotations is, of course indcpendent of k. For a bounded system,in which there is a
natural lower limit to &, a finite correction to ¢p results from (5.'/).

I’here is no change in thespecific heat of the system associated with the contributions
to k- arising from one-loop corrections to that quantity as calculated in previous Sections

because cancelling vertex corrections arc aso generated.
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VI. EFFECTS OF RANDOM MOTIONS ON A *HeCRITICAL POINT

EXPERIMENT

As an application of the results derived in the previous Sections, we will calculate the
effects of random linear and rotational motion on the properties of °llc in the vicinity of its
liquid-gas critical point. This is with an eye to establishing the limits placed on microgravity
critical point measurements by vibrations in an orbiting laboratory. Information on the
thermodynamic functions and transport properties in the vicinity of the *Ile critical point
is incomplete. [|'here is, in addition, some variability in the data on linear accerclation
in a space-based laboratory, and no measurements have been madc of rotations in that
environ ment. Because of all this, the calculations reported in this Section will necessarily
involve appjoraximat ions, and results will be accurate as order-of-magnitude estimates at
best. Nevertheless, we find that the effects of randomn, linear accelgartions arc negligible
in any f(}iéécablc critical point experiment. In the case of rotations, sufficient uncertaintly
exists that one cannot rule them out as a perturbing cflcct, in the absence of an experimental

determination of their magnitude.

A. Linecar accelerations

First, wc will estimate the density fluctuations and the temperature drift, using the

results obatined in Section 111. Using I5q. (3.21 ) and values in ‘1'able 11l wc find

@ = 9.77 X 10"9%:1—2 /(a(w) a(--w)) dw x 177, (6.1)

The exponent « in Eq. (6.1 ) is equal to 0.11, so the temperaturce dependence of the left
hand side is not particularly strong. We have assumed a container with a linear dimension
I. &= 10 cm. Data from experiments alrcady performed on shuttle vibrations indicate that the
largest sources of “g-jitter” give rise to accelerations of order | cm/scc®with characteristic

frequencics of the order of 10 Hz [12]. All this indicates that vairations in the density will -

be no more than a part in 10'down to reduced tcmperatures of 10-8.




Next, wc calculate the thermal drift due to viscous damping of the vibration-induced
motion of the fluid. Inserting results from Table 111 (we have utilized the amplitude of C,

as an estimate of the amplitude of cp) we find

! - °I< l/ n—Iy
%—7{ ~15x10 - i (F=n=ee) /w a(~w)) dw. (6.2)

This effect is absolutely negligible.
Finally, IXq. (4 .7) alows us to see what effect random line.m motion has on the thermal
diffusivity. At very low reduced temperatures the correlation length & dominates all other

lengths in the integral and we find

8Dy 1 kT I* [p. S o |
]):I 97r pCDY C4 7]1 g/w <Cl(L()) (l('(.d)) du)

= 7.56 5 107247 vBnma) =204 o, / W (a(w)a(~w)) dw. (6.3)

The power of the reduced temperature is ~ —1 .5. At no experimentally achievable value of

t will the above effect be of any importance.

B. Rotations

Here one is hampered by lack of information concerning tile random rotations on the
spacecraft. Howcver, it is possible to come up with a very rough estimate of the spectral
density, (2(w)Q(—w)). If wc assume Q(w) ~v(w)/L,, where L,is the size of the shuttle,
which wc take to be~ 10 m, then the effects of €} of transport propertics, as given by Eq.

(5.2), arc

/ do{e@)al-w)) (6.4)

w“]/
If wc replace w in the integrand above by 101z and the integrated spectral density of

accelerations by 1 cm?/sec?

wc arrive at a fractional effect of ) of a part in1 O°. However
this estimate is extremely crude, and there my be errors of a few orders of magnitude. The
same estimate applies for the effect of €2, on the shcar viscosity- assuming that 71 and 7

arc closc in magnitude.
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As for the conscquences on the thermal response of €2, wc find for the fractional change

in both Dy and C

2
6Dr  bcp _ cpl” J dw (1 W) (- w))
DT - Cp Cy CE

~ 10 Tsec?t ™ ] dw (0L @) (- w)) (6.5)

The quantity L is Eq. (6.5) is the size of the container of 3Ile, which wc take to be 10 cm.
Once again, to within the very large errors resulting from our uncertainties regarding the
spectrum of rotations, wc find that there is no observable effect at an achievable reduced

temperature oft = 10-8.

VII. CONCLUSIONS

Wc have developed expressions defining the effects of fluctuating linear and rotational
accelerations on static and dynamic phenomena near a liquid-gas critical point. These
expressions arc valid in the long-wavelength, low- frequency limit. The results of this analysis
were applied to the properties of °He in the vicinity of its critical point. Using g-jitter data
from previous space shuttle flights, wc find that random linear motionsexpected in future
microgravity experiments should not affect mecasurements of critical point phenomena to
reduced temperaturces of 10-8, At this time, mcasurcements of random rotational motions in
the space shuttle arc not available. However, using estimates for the spectrum of random

rotations wc also find that there will be negligible effects on critical point phenomena.
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APPENDIX A: HYDRODYNAMICS OF A SIMPLE LIQUID-GAS SYSTEM
NEAR THE CRITICAL POINT

The dynamics of a simple liquid-gas system consists of the following three equations:

« Conservation of mass, which relates the mass density, p(x, 1 ) to the mass current,
i(x,t) = p(x,t)v(x, t)

dp

—+4+V-.3=0 Al

ETRARR. (Al)
« Conservation of (thermal) energy-—under the pirocesses of convective transport and

thermal diffusion

dq ] g OF
it AR} = kVE—— - ) A2
at+v (p) kV 5 FO(x, 1) (A2)

The expression 6F/&qg on the right hand side ef Eq. (A2) is the functional derivative of
the total Helmholtz free energy of the system, F'. with respect to ¢(x,t¢), the thermal
energy per unit volume. The transport cocflicient« is the thermal conductivity. The
last term on the right hand side represents the rapidly-varying contributions to thermal
transport that give rise to fluctuations in the ener gy density. These terms, which have
a“white noise” spectrum, satisfy the following version of the fluctuation-dissipation

relation in real space:

(O(x, 1) O(X, 1)) = 2kpT'kV28(x - X)6(L - 1'), (A3)

or, in wavevector /{requency space,

(O(k, w)O(K', ")) = 2kpTkk?8(k + K')6(w + W). (A4)

Equation (A3), or (A4), helps insure the invariance of the Boltzmann distribution

exp(—#/kgT) under the action of the system’s dynamics.
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. Finally, there is the equation expressing the conservation of rnomentum in the hydro-
dynamical system:

aj d . 5F . OF o e
5" 5o (o) + q,(x,t)vm + p(x, 1)V o +&(x, ). (A5)

The first term on the right hand side of kq. (A5) is the viscous damping force. In

more detail,
- 0
(V . O')k = -8—1;;0']“'
= Vi + [lm + 77,] ——8—V V. (A6)
! 3 ‘ 8.’17k

The coefficients 7, and 72 are, respectively, the shear and bulk viscosities. The final

term on the right hand side of the equation represents the fluctuating forces that act on the

velocity ficld. These forces satisfy the fluctuation-dissil)ation relation
1 ! /
(60,0656, ) = (2haTm k8 + 2kuT [ + ] kil ) 6k + K)o+ ), (AT)

which, again helps ensure that the dynamics leave the Boltzmann distribution invariant.

The conservative contributions to the equations of mass, energy and momentum
conservation- contained on the left hand sides of Iigs. (A 1), (A2) and (A5)—also preserve
the Boltzmann distribution, by leaving the total free encrgy invariant. These equations thus
form a dynamical system which encompasses both the¢ macroscopic. hydrodynamics of the
liquid-gas system and the coarse-grained, thermally-driven fluctuations associated with the
microscopic exploration of phase space mandated by tlicergodic hypothesis.

Although the parameter set p(x,t), j(x, t) and g(X, 1) is the most natural basis for the
derivation of equations that satisfy all the conservation laws and invariance principles, fur-
ther development of the dynamics, especially as they apply intheimmediate vicinity of the
critical point, is greatly simplified by replacing thermal energy density and mass current
by thermal energy per unit mass, €(x,t)=¢(x,t)/p(x,t) and the velocity field, v(x,?). In
terms of the new variable set the equations for mass, energy andmomentum conservation

are as follows:
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-a—t+v-(pv) =0 (Ass)
Oe ] 16F 1
b Ve =--V 2 -t- -0 A8b
5 +v- Ve ﬂ 7 e P ( )
ov OF  6F o 1
g S pV— ——Ve = V.04 ¢ A
o (v V)v+ [pvap P Ve \7 7 + pﬁ (A8c)

This set of equations can be thought of as “model H* critical dynamics [13,14], extended to
include non-critical dynamical behavior of the longitudinal component of the velocity field.

Now, if the total free energy can be written
Fe= [ £ (p(x),e(x)) da, (A9)

where f (p(x), c(x)) is a purely local function of the mass density and energy per unit mass,
then the terms proportional to the derivatives of the free energy on the right hand side of

Eq. (A8c can be rc-arranged as follows:

51 6F Bf Of
AP A Faa
ar ar
. @_- fin o -) o - 2 U,
=V {) P, i (A10)
A straightforward set of thermodynamic arguments leads to the relationship
3}
Pk = (5, = P(pr0) (AlD)

with P(p,¢) tile local pressure. ~'bus, if the free energy density is purely local, then the
macroscopic driving term in the momentum conservation equation is the gradient of the
pressure. In fact, nonlocal contributions to the free energy density, in the form of terms con-
taining spatial derivatives, play an important role in coupling the hecat- and mass-transport

equations.

APPENDIX B: LINEARIZED HYDRODYNAMICS AND TIME SCALES

Linearized hydrodynamics describe the long wavelength-low frequency behavior of a sys

tem close to equilibrium. As the equilibrium-1 state is one in whichthe frec energy is rnini-
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mized, wc write

F = F(poy o)
+/ [a(k)es (k,w)er (—k, —w) + b(k)er(k,w)pr (—k, —w) + e(k)p (k,w)pi (—k, —w)] d’k

+0 ((/’1,61)3) : (B1)

The quantities p, and ¢; stand for the differences between the mass density and energy per
unit volume and the equilibrium values of those quantities. If the frce energy density were
purely local, then the coefficients a(k), b(k) and c(k) would not vary with the wavevector,
k. Thermodynamics and dimensional considerations mandate the following relationships

!
between the cocfﬁc/ents a(0), b(0), c(0) and standard thermodynamic quantities:

a(0) :27f:CCV- (B2a)
_ 4 (g%/")s

b(0) = —-17;-- (B2b)

c(0) = 5?%;3_ (B2c)

The quantity ¢v is the specific heat at constant volume, and Bs is the adiabatic compress-

ibility. Standard thermodynamic formulas yield the following relationships:

a(0) (1 — b(0)*/4a(0)c(0)) = 57’,’; - (B3a)
i
231p2’

i

c(0) (1 — b(0)*/4a(0)c(0))= (B3b)

where, ¢p is the specific heat at constant pressure and Br is the isothermal compressibility.
For a complete list of the thermodynamic functions used in this paper scc ‘I’able |.
Expanding Kqs.(A8) to first order in v, p; and ¢; we obtain, inthe wavcvcctor-frequency

rcprescntation,

—twpy(k,w) + pok - v(k,w) == 0 (B4a)
—twe(k,w) == ——--‘ng [2a(k)a(k, w) + b(k)py(k,w)] (B4b)
k. v(k,w). (B4c)

—iwv(k, w) + ik [2¢(k)p1(k, w) + b(k) a1 (k, w)] = _Zlk?v(k, w) + k 3 + m
0

[3 Po
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This is the equation satisfied by a viscously-damped, adiabatic sound wave. If we replace w

by the undamped solution to Eq. (137), the relationship in (B7) is replaced by
2k%ka(k ===
= 2-(—) < \f2c(k)pok = Cik, (B9)

£o

where C, is the velocity of an adiabatic acoustic wave. ‘I’his relation is satisfied at sufficiently
small wavevectors, or sufficiently long wavelengths. The second regime is defined by the

converse of the relationship above, i. e.

2, (]
we X 'Z“Ql) (B10)
p
Here the equation is, asymptotically,
2 b(k)?
w3 e o e g HE) (B11)

Po [ 4arr(k)c(k) 1~
Now, the velocity is that of an isothermal sound wave. Replacing w by the solution to the

undamped equation, we arrive at the altcrnate-farm-of o (1111)

_ b(k)?
2k?ka(k) N dalBYel k)
2> 2B 1 - alklelk) 1 = ¢, . (B12)

Here ¢y is the velocity of an isothermal acoustic mode. This relation will hold when the
wavevector is sufficiently large, or the wavelength is sufficiently small.

To find the fina root of the global dispersion relation (B6), set w =4{. The resulting
equation is a cubic with real, positive coefficients. There is onercal root, and that real root
must be negative. If we anticipate that the { that solves the equation is of order k’, for

small k, then the equation satisfied by ( reduces to

_ 2a(RR% UK o
¢ = P 1[ Tkl L O(k). (B13)

This is the dispersion relation for thermal conduction.

APPENDIX C: EFFECTIVE HAMILTONIAN IN THECASE OF TWO SCALAR

FIELDS

Becausc there arc two fluctuating fields to take into accountinthe calculation of g-jitter

effects, the “bare” eflective Hamiltonian is somewhat more complicated than in the case of
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the scalar (i.e. single component order parameter) ¢* model. In this Appendix we review the
features, particularly the critical behavior, of a model for simple gas-liquid critical behavior
that incorporates the effects of fluctuations in both the mass density and the energy density.

The most general case of a theory with two fluctuating scalar fields, one of which becomes
critical at a temperature 7y, has the following Ginzburg-Landau- yjlson expansion in the
immediate vicinity of the critical point:

1 [z(q), y(q)] = Er(q)m(q)w(—Q) + UE, z(aqr). .. x(qs)

q Q1+ -+q4=0

) S

| , -
157/ a0 %qg_o')””(‘”)y(q“") T3 Av(aly(-a). (ch)

All ncglected terms are higher order in the fluctuating fields z(q)andy(q), and are irrelevant
in the Renormalization Group sense. In the vicinity of the critical temperature, the “bare”
quadratic cocflicient 7(¢) goes to zero while A is a nonzero positive constant.

Fluctuations in the critical field #(q) will renormalize the cocfficients 7(¢), %, v and A.
Because the quadratic terms influence the slow dynamics most strongly we concentrate on

r(¢g) and A. The ultimate form of r(q) is well-lillown. Asymptotically
r(g) = Q" (1 = 1@, 4/Q) (C2)

where v is the correlation length exponent--( o<(7' —7, )-"—and Q is an inverse length scale,
determined either by the correlation length (i.e. Q oc{”l) or by the internal wave-vector q
(Q o< g). This is just standard correlation function scaling.

Fluctuations in 2(q) act on the quadratic term Y-, Ay(q)y(—«) through the “correlation
bubble” (C(q) C(—q)), where

c(q) —fE qd - q)a(q) (C3)

Because this bubble has the form of an energy-energy correlation funciion— -in the language

of the Ising spin modcl- -straightforward scaling considerations yield for the renormalized A

A=Q g (1 =T)Q™,4/Q) , (C4)
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with Q again an inverse length scale. This scaling form holds if the critical exponent for the
specific heat at constant volume, a = 2 — dv is greater than zero, as it is in the case of the
simple gas-liquid critical point. Therescaling of A is discussed in more detail in the next

Appendix.
Now, the two fields z(q) and y(q) are linear combinations of the energy density €(q) and

the mass density p(qg). Specifically, we assume

y(q) = ac(q)+ Bp(q) (C5a)

z(q) = ve(q) + 6p(q). (C5b)

Substituting into Eq. (Cl), we obtain the following free energy in p and €, to quadratic

order in the two densities:

Fle, pl = 3 lalg) d@)e(—a) + b(q)e(a)p(—a) + SlD)r(@)r(~a)], (C6)
where
a(g) = r(q)a®+ Ay* (CTa)
b(q)=2r(q)ap +- 2A~6 (C7b)
c(q) = r(q)B*+ A8 (CTc)

The coeflicients a(q), b(¢), and c(q) are dominated by the contributions of A in the imme-
diate vicinity of the critical point, as the approach to zero of A is much gentler than that of
7(¢). 11'bus, the sound velocity C,=-1//B,p. vanishes as t*/2.

The behavior of the combination a(q) -- b(q)?/4c(q¢) is another matter entirely. Using

Eqgs. (C7):

- o 2 _ oM e e
Tt B+ A8
. By 2
-—7[0—6]-%0(/1 (C8)

This combination scales as r(q).
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APPENDIX D: RENORMALIZATION OF THE COEFFICIENT A

In This Appendix, wc fill in the details of the renormalization of the coeflicient A in the
Ginzburg-Landau equation, Eq. (Cl). We start by introducing a field, ~(q), conjugate to
the non-critical field z(q). The portion of the Boltzmann factor the exponent of which is
linear and quadratic in z(q) is

ex p( -~ Az(q) z(-q) - vvlﬁ > elay(aylas) + 22 Ma)e(-a) . (D1)

q qi+-++qa=0 q )
Integrating over z(q), we obtain the following contribution to the Boltzmann factor, where
prefactors to the exponential have been neglected

q 44 qQ1+--+q3=0 )

exp (-~ sy Mazal s ) (2)

The second term in the above exponent represents anenergy-like coupling to the y(q) ’s.

Integrating out those variables, wc are left with the following quadratic term in the h(q)’s

Il'(Q)‘h‘(q"Q) v2Qd—2/u
4 A%

: (D3)

where the quantity Q is an infrared momentum cutoff. There is, hen , a gaussian contribu-

tion to the Boltzmann factor of the form

A@h(=a) _ h(a)h(-q) 3 ¢t
exp (— A v Y . (D4)

Finally, wc r-e-introduce the variable z(q) by multiplying the Boltzmann factor by

exp (—i > h(q):z:(—q)) and integrating over h(q).The result is the gaussian form

Ax(q) x(=q)
exp (_ 1+ v?Qd--Z/u/A) (D3)

Now, if the critical exponent for the specific heat at constant volume, o =2 — dv is
greater than zero, then as Q — O the renormalized coeflicient A vanishes as Q2/¥~¢, while

A rcnormalizes to anon.zero value if o < 0.
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FIGURES
FIG. 1. Some graphical elements of the Feyman Diagrams for critical dynamics. a : The heat

diffusion propagator; b: The transverse velocity field propagator; c¢: The “parametric” effect of
random linear accelerations on the transverse velocity fcld;, d: The “parametric” effect of random

rotations on the transverse velocity field

FIG. 2. One-loop correction to the thermal conductivity. The three-point vertices in the dia

gram are generated by the convective term in the heat transport equation (Iq.(A8b)) and the

term 14EV¢ in Eq. (A8c).

FIG. 3. nsertion on the transverse velocity propagator line generated by random rotations
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TABLES
TABLE 1. Definitions of the quantities appearing in the text, and tile scaling behavior of critical

thermodynamic functions and transport coeflicients. The quantity tisthe reduced temperature,

t=(T = T.)/T..

Quantity Definition Dominant scaling behavior (if any)
T Critical temperature

Pe Critical mass density

13 Correlation length xiva
cp=T (%)P Specific heat at. constant pressure x {77 @

cv =T QQ%)V Specific heat at constant volume S
Pr=—3 (g’%)T Isothermal  compressibility o« 17y @

Bs = ~% (g%)s Isentropic compressibility x {72

K Thermal conductivity x 1-vm D

m Shear viscosity oc 1 Vb
aref. [15] - N

brefs. [16,17,13,14]

TABLE |l. Relations between various exponents. dis the spatial dimensionality

a=2~-dv?

=v(2-n)*

a:,\+x,,:4-—-d+nb

aref. what?

brefs. [16,17,13,14]
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TABLEIIL. Numerical values of some of the quantities that arc used in the calculations relevant

to 3He. uncertainties are not recorded here but may be found in the cited references.

Quantity Definition Vaue
u Specific heat exponent 0.63 *
7 Anomalous dimension exponent 0.0002 @
T) Thermal conductivity exponent 0.916 °
Pe Critical density 0.042 g/cm®*
kg T, Critical temperature (in cgs) 458 x 107'¢ gecm? fsec?*
Dr = :z/c»c! Thermal diffusivity 1.06 x 10~4 075 cm2/sec d
Ns/ e Shear viscosity 3.99 X 10~ 4-0.031 cm®/sec *
Br isothermal  compressibility 1.86 x 1077t 118 cmsec? /g
Cs Velocity of sound (at low frequency) 3.2 x10*1%%7 cm/sec &
¢ Correlation length 256 x 1078¢7963 ¢m®
cp specific neat at constant pressure 2.53 x107t" 118 ergg/g®° K b
a‘_ref.l -

brefs. [13,14]

°ref. [18]
‘ref. [7]
“ref. [20]
‘ref. [21]
gref [22]

href. [23]
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